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AN EFFICIENT, TWO-DIMENSIONAL IMPLEMENTATION
OF THE FFOWCS WILLIAMS AND HAWKINGS EQUATION
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This paper describes a two-dimensional formulation of the Ffowcs Williams and
Hawkings equation in the frequency domain. By assuming subsonic rectilinear
motion of all acoustic sources, an e$cient and easily implemented form of the
equation is developed. This method is capable of predicting the far"eld noise from
non-linear near"eld #ow quantities. The ability to use non-linear input data is
a clear advantage over Kirchho!methods, that are only valid in regions where the
linear wave equation accurately describes the #ow. Several example problems are
used to demonstrate that the new method performs well for problems with a mean
#ow, tonal and broadband noise signatures, and non-linear near "elds. In most
practical acoustic problems, three-dimensionality is important and should not be
neglected. For these real-world applications, two-dimensional solutions can be
used to guide and augment full three-dimensional calculations, but not replace
them.
( 1999 Academic Press
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1. INTRODUCTION

Despite recent advances in computational aeroacoustics, numerical simulations
that resolve wave propagation from near"eld sources to far"eld observers are still
prohibitively expensive and often infeasible. Integral techniques that can predict the
far"eld signal based solely on near"eld input are a means to overcome this
di$culty. Brentner and Farassat [1] have recently compared two of the most
popular techniques; Kirchho! and Ffowcs Williams and Hawkings. The Kirchho!
method is based on an inhomogeneous wave equation derived by assuming that
there exists a region of linear wave propagation such that all of the sources within
a "xed surface can be replaced by a distribution of equivalent sources on that
surface. In order for this assumption to be met, the input acoustic pressure
(p@"p!p

o
) and its time and normal derivatives on the surface must be within the

linear #ow region so that they are compatible with the wave equation. Farassat and
Myers [2,3] extended the method to allow for arbitrary subsonic and supersonic
motion of the surface. The Kirchho! method can be used e!ectively when its
assumptions are met, and it has been used successfully by many authors. Ozyoruk
and Long [4] used a Kirchho! technique to extend a computational aeroacoustics
(CAA) calculation of a ducted fan. Atassi et al. [5] used a Kirchho! method to
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898 D. P. LOCKARD
calculate the radiated noise from an airfoil encountering a vortical gust. Shih et al.
[6] evaluated di!erent Kirchho! formulations for jet problems. Mankbadi et al. [7]
and Atassi et al. [8] developed Kirchho! formulations that require the pressure,
but not its derivative, on the surface.

The Ffowcs Williams and Hawkings [9] (FW}H) equation is a rearrangement of
the exact continuity and Navier}Stokes equations. The time histories of all the #ow
variables are needed, but no spatial derivatives are explicitly required. The solution
to the FW}H equation requires a surface and a volume integral, but the solution is
often well approximated by the surface integral alone. Singer et al. [10] have shown
that when the surface is in the non-linear near "eld, the FW}H approach correctly
"lters out the part of the solution that does not radiate as sound, whereas the
Kirchho! method produces erroneous results. Many other applications and
comparisons of the FW}H and Kirchho! methods can be found in the area of
rotorcraft acoustics [11}14]. The FW}H method has typically been applied by
having the integration surface coincide with the surfaces of solid bodies, but the
method is still applicable when the surface is o! the body and permeable. For
three-dimensional #ows, the formulations developed by Farassat [15] are probably
optimal. Because all signi"cant acoustic phenomena are three-dimensional, these
formulations should be preferred. However, the computational cost of generating
the near"eld database is often limiting. Furthermore, the #ow structures
responsible for generating noise can be pseudo-two-dimensional, with a "nite
correlation length in the third direction. In such cases, a two-dimensional
simulation should give the correct features of the radiated sound, but overpredict
the amplitudes. Two-dimensional results can be used to "nd trends and determine
the resolution requirements for three-dimensional calculations, but they do not
capture all of the relevant physics. However, Singer et al. [16] compared two- and
three-dimensional solutions for slat noise and demonstrated the usefulness of the
two-dimensional results. This capability is currently being used to obtain quick "rst
estimates of the noise from sources that extend along the span of a wing.

This paper presents a new formulation of the FW}H equation that is appropriate
for two dimensions. The formulation is robust, easy to implement, and maintains
the important properties of other FW}H formulations. Some applications are given
that demonstrate the utility of this version and its advantages over Kirchho!
methods.

2. GOVERNING EQUATIONS

The FW}H equation can be written in di!erential form [17] as
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The contribution of the Lighthill stress tensor, ¹
ij
, to the right-hand side is known

as the quadrupole term. The dipole term F
i
involves an unsteady force, and Q gives

rise to a monopole-type contribution that can be thought of as an unsteady mass
addition. The function f"0 de"nes the surface outside of which the solution is
desired. The total density and pressure are given by o and p respectively. The #uid
velocities are u

i
, while the v

i
represent the velocities of the surface f. The Kronecker

delta, d
ij
, is unity for i"j and zero otherwise. A prime is used to denote a

perturbation quantity relative to the free-stream conditions denoted by the
subscript o. The Cartesian co-ordinates and time are x

i
and t respectively. The usual

convention involves a quiescent ambient state with f prescribed as a function of
time so that it always surrounds a moving source region of interest. H( f ) is the
Heaviside function which is unity for f'0 and zero for f(0. The derivative of the
Heaviside function H@( f )"d ( f ) is the Dirac delta function, which is zero for fO0,
but yields a "nite value when integrated over a region including f"0. The inviscid
part, P

ij
"pd

ij
, of the compressive stress tensor P

ij
is used in this derivation.

Although the equation is written in Cartesian tensor notation, by interpreting the
indices to run only over 1 and 2 it can be thought of as being in two dimensions.
However, most of the development will be applicable to both two- and
three-dimensional problems.

A time-domain solution to equation (1) can be obtained from the Green function
for the wave equation,

A
L2

Lt2
!c2

o

L2

Lx
i
Lx

i
BG(x, t; n, q)"d(x!n)d(t!q), (5)

where m
i

and q are the source co-ordinates and time respectively. The two-
dimensional Green function is
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where r"Dx!n D. A solution to equation (1) can be written as the convolution of
the Green function and the source terms on the right-hand side of the FW}H
equation. Denoting these source terms as S, the solution is
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where the in"nite spatial integral is over the entire two-dimensional space and
dn"dm

1
dm

2
. The Dirac delta functions in the monopole and the dipole portions of

S can be used to reduce the spatial integrals to line integrals; however, the
quadrupole term cannot be simpli"ed. Typically, the surface is placed outside of all
regions where ¹

ij
is signi"cant so that the quadrupole integration, which is only

performed outside of the surface, may be neglected properly. The main di$culty
with equation (7) is the in"nite time integral. The Heaviside function can be used to
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900 D. P. LOCKARD
change the upper limit to a "nite value, but the lower limit will always be in"nite.
A result of the tail e!ect in two dimensions is that an in"nitely long time is required
to account for all of the contributions of sources spanning the entire third spatial
dimension. The time-domain formulation could be used because one can always
truncate the time integration at some practical limit. However, the time integration
range needed to capture all of the two-dimensional e!ects may be quite large. In
three dimensions, the Green function includes a delta function that can be used to
evaluate the temporal integral.

However, a simpler formula can be obtained that makes no approximations
about the two-dimensional nature of the problem. To obviate the costly time
integration, the problem can be transformed into the frequency domain. Atassi
et al. [8] and Mankbadi et al. [7] used this transformation for the Kirchho!
equation. A direct application of a Fourier transform to equation (1) would not
be useful because the sifting property of the d ( f ) functions would be used in the
transform, making it di$cult to simplify the spatial integrals. A more appropriate
form can be obtained by assuming a speci"c time dependence of the function
de"ning the surface. A useful case is that of uniform rectilinear motion,
f"f (x#Ut), where the components of U are constant velocities describing the
motion of the surface. An application of the Galilean transformation from (x, t) to
(y, t6 ),
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to equation (1) leads to
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where after the transformation, the F
i
and Q become
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¹
ij

is unchanged, and f"f (y) is now only a function of the spatial co-ordinates.
The surface velocities v

i
have been replaced by !;

i
, which can be inferred from

inspection of f (x#Ut)"0. The convected wave operator on the left-hand side of
equation (11) could have been obtained directly from the Navier}Stokes equations.
In the derivation of the di!erential form of the FW}H equation, the surface would
be assumed "xed in space. Instead of forming a wave equation on the left-hand side,
terms would be added and subtracted to form a convected wave equation. The only
JSV 19992522



TWO-DIMENSIONAL FW-H EQUATION 901
di!erence in the "nal equations is that the velocities u
i
would include the free-

stream mean #ow, whereas they are perturbations from the mean in the current
development. When using total velocities, the appropriate forms of equations (12)
are
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The perturbed quantities are somewhat more convenient to use because that form
more explicitly shows when the quadrupole term will be small. Equation (11) is now
in a convenient form to perform the Fourier analysis. With application of the
Fourier transform pair

FMq(t)N"q(u)"P
=

~=

q(t) exp(!iut) dt (14)

and
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2n P
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equation (11) becomes
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The wavenumber is de"ned by k"u/c
o

and the Mach number M";/c
o
. The

complex number i"J!1. Note that the transform has been applied to the
groupings ¹

ij
, F

i
, and Q because the equation is linear in these terms. However,

the desirable properties of the FW}H are maintained because all of the non-linear
products are included before the transformation is applied. In a numerical
implementation, the products are formed "rst, and then a fast Fourier transform
(FFT) is applied. As a caution, the FFT must use the sign convention of equations
(15), or the derivation must be modi"ed appropriately. The Green function for
equation (16) when M(1 can be obtained from a Prandtl}Glauert transformation.
Denoting the two-dimensional source co-ordinates as m and g and the observer
position as x and y, the Green function is

G (x, y; m, g)"
i

4b
exp(MkxN /b2) H(2)
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k
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xN "(x!m) cos h#(y!g) sin h and yN "!(x!m) sin h#(y!g) cos h. (17)

The angle h is de"ned such that tan h"</; and M"J;2#<2/c
o
, H(2)

o
is the

Hankel function of the second kind of order zero, and b"J1!M2 is the
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902 D. P. LOCKARD
Prandtl}Glauert factor. The solution to equation (16) for M(1 can now be
written as
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The in"nite integrals cover the entire two-dimensional space. The dipole term can
be simpli"ed by moving the Green function inside the derivative operator and
applying Green's theorem to show that the integral of the divergence is zero,
because F

i
goes to zero at in"nity. The remaining term can be simpli"ed, as can the

monopole term, using the sifting property of the d function. The manipulations to
the dipole term are illustrated by
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For simplicity, the normalization D+ f D"1 is used for f. The "nal integral in
equation (19) is over the contour line de"ned by f"0. Application of similar
manipulations to the monopole and quadrupole terms yields
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The Heaviside function on the left-hand side of equation (20) shows that the
solution at any point within the integration surface should be zero for all time. This
is an excellent check of the accuracy of the computations. As has already been
stated, the quadrupole term is typically neglected because its contributions is
often small, and the calculation is somewhat involved and expensive. There are
certain #ows where the quadrupole cannot be ignored, such as jets where the
quadrupole is the dominant noise source. The quadrupole is also important when
there is signi"cant refraction of waves by shear layers and wakes. As long as
the integration surface is placed outside of all regions where ¹

ij
is large, the

quadrupole contribution is included by the surface sources even though the
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TWO-DIMENSIONAL FW-H EQUATION 903
quadrupole integration is not performed. However, in problems such as jets, the
shear layers are nearly semi-in"nite, and it is prohibitive to enclose the entire jet by
the integration surface because of its large extent and the probable lack of accuracy
of any solver used to generate the solution on the surface. Nonetheless, there are
many relatively low-speed #ows where the surface can be placed around all regions
of high shear.

In equation (20) the monopole and dipole terms have been reduced to line
integrals around the two-dimensional surface f"0. Hence, the entire solution
process involves calculating the surface normals and forming the products in F

i
and Q for all time at each point on the surface, performing the FFTs, and then
evaluating the integral for each frequency of interest. An inverse FFT can be used to
recover the acoustic signal in the time domain. For truly periodic problems one
merely uses a single period of the #ow data as input to the FW}H code. However,
for more complicated, aperiodic #ows, windowing the data may be required. This is
usually the case when the input is provided by a CAA calculation, where it is often
impractical to run a calculation to a perfectly periodic steady state. Furthermore,
the F

i
and Q source terms are often out of phase, making it impossible to obtain an

integer number of periods of both terms simultaneously. The windowing should be
applied to F

i
and Q after their mean values are subtracted. The subtraction has no

e!ect on the calculated noise because the derivatives of G all contain u, and
equation (20) shows that there is no contribution to the noise at u"0 when the
quadrupole term is neglected. The minimal amount of time data typically available
from a CAA calculation may lead to some inaccuracies in the windowed FFT, but
short time records are often just as much of an impediment for time-domain
formulations. In both approaches, whatever signal is available is repeated over
some period. Most CAA calculations are designed to resolve #uid phenomena with
a known frequency content. These #ows are stationary and typically dominated by
tones. Hence, periodicity is generally a reasonable approximation.

3. EXAMPLES

3.1. MONOPOLE IN FLOW

As a "rst demonstration of the utility of the two-dimensional, frequency-domain
formulation of the FW}H equation, the "eld from a monopole line noise source is
computed in the far "eld using the present technique. The source is located at the
origin and placed in a uniform #ow in the #x direction. The complex potential for
the monopole is given by Dowling and Ffowcs Williams [18] as

/ (x, y, t)"A
i

4b
expi(ut#Mkx/b2) H(2)

o A
k
b2

Jx2#b2 y2B. (21)

The variables needed in the FW}H equation are obtained from the real parts of
p@"!o

o
(L//Lt#;

o
L//Lx), u@"+/, and o@"p@/c2

o
. Equation (21) is written in

a laboratory frame where the #ow is moving over a stationary source. The forms of
F
i
and Q in equation (13) are appropriate in this frame, but one can just as easily use

the perturbation form in equation (12) by using only the perturbed velocities
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Figure 1. Directivity comparison at r"500 m for a monopole in a M"0)5 #ow: **, analytic;
s, FW}H.

Figure 2. Time history comparison at x"500 m, y"0 m for a monopole in a M"0)5 #ow:**,
analytic; s, FW}H.

904 D. P. LOCKARD
instead of the total. The source terms in the FW}H equation are calculated from
the #ow variables evaluated over one period on the surface. For this case,
M";

o
/c

o
"0)5, u"4272)5 rad/s, A"0)034 m2/s and the integration surface

is a square that extends from !2 to 2 m in both x and y. Fifty uniformly
spaced points are used on each side of the square. Figure 1 compares the directivity
from the calculation to the analytic solution, and Figure 2 makes similar
comparison for the time history at x"500 m and y"0 m. The agreement
is excellent, demonstrating that the formulation is valid for problems with
a uniform mean #ow.
JSV 19992522



Figure 3. Schematic of vortex passing an edge.

TWO-DIMENSIONAL FW-H EQUATION 905
3.2. SCATTERING BY AN EDGE

As a second example, the acoustic "eld from a single line vortex passing by
a sharp edge of a semi-in"nite plate is propagated to the far "eld. The problem was
originally solved by Crighton [19]. A schematic of the problem is shown in Figure
3. The maximum speed of the motion occurs at time t"0, when the vortex is
adjacent to the edge. The Mach number of the vortex motion when it is at this
position is M"0)01, and the minimum distance to the plate is taken as a"1 m.

The geometry creates a slight problem because the free-space Green function is
used in the solution procedure for the FW}H equation. One could use the correct
Green function for this geometry, but only approximate representations exist.
Therefore, the integration is extended far enough over the plate so that all of the
important e!ective sources on the plate are enclosed by the surface. The surface
extends from !400-to-2 m in x, and from !2 to 2 m in y. A total of 2200 points
are used to de"ne the surface. A time history of the acoustic "eld from !7)4 to 7)4 s
captures most of the features of the slowly varying signal as the vortex passes the
edge. The signal is rich in harmonic content because it is caused by the single event
of the vortex accelerating around the edge. The directivity comparison between the
exact and calculated "elds for observers at a radius of 50 m from the edge is shown
in Figure 4. An angle of 03 corresponds to the downstream direction, and the angle
is measured in the counterclockwise direction. The point in the upstream direction
is not included because it is inside the surface. The time histories of the point at
453 are compared in Figure 5. Again the agreement is excellent, showing that the
current approach is applicable to problems that are not dominated by a single
frequency and when the source of the acoustic radiation is spatially distributed.

3.3. CYLINDER SHEDDING

The "nal example involves the calculation of the noise generated by the shedding
of vorticity from a circular cylinder. The near"eld in this problem is highly non-
linear, and its use in a Kirchho!method would not be appropriate as demonstrated
by Singer et al. [10]. The input data for the acoustic calculation is provided by
JSV 19992522



Figure 4. Directivity comparison at r"50 m for a vortex passing an edge. The maximum Mach
number of the vortex motion is 0)01. **, Analytic; s, FW}H.

Figure 5. Time history comparison at r"50 m and 453 from the upper surface of the plate for
a vortex passing an edge: **, analytic; s, FW}H.

906 D. P. LOCKARD
a two-dimensional, time-dependent CFD solution using the code CFL3D
[20,21]. CFL3D was developed at NASA Langley Research Center to solve the
three-dimensional, time-dependent, thin-layer Reynolds-averaged Navier}Stokes
(RANS) equations using a "nite-volume formulation. Brentner et al. [22] and
Singer et al. [10] have examined this problem with a similar approach; however,
they replicated the planar CFD data over a "nite distance in the spanwise direction
and used a three-dimensional FW}H code to calculate the radiated sound. The
CFD data used in this work comes from reference [10].
JSV 19992522



Figure 6. Vorticity "eld computed from CFD. The grid extends to r"20D and has 97 radial and
193 circumferential points (every other grid line shown).

Figure 7. Time history of the surface pressure, and the window function used to make it periodic.
(a) Surface pressure at 903, (b) Window function.

TWO-DIMENSIONAL FW-H EQUATION 907
A cylinder with a diameter D"0)019 m is simulated in a laminar #ow with
a free-stream Mach number of 0)2. The Reynolds number based on free-stream
velocity and cylinder diameter is 1000. The acoustic signal is observed at a radius of
128D"2)432 m from the cylinder. Integration surfaces have been taken on the
cylinder surface (0)5D) and at radial distances from the cylinder axis of 1)5D, 2)5D,
and 5)1D. Figure 6 presents an instantaneous vorticity "eld obtained from the CFD
calculation with a superimposed grid distribution on the lower portion of the
"gure. The positions of the integration surfaces are indicated in the upper portion
of the "gure.

Because of the complexity of the underlying #ow, care must be taken in the
transform of the input data into Fourier space. Figure 7(a) shows the time history of
JSV 19992522



908 D. P. LOCKARD
the surface pressure at 903. The downstream direction is at 03, with increasing
angles measured in the counterclockwise direction. Although the signals is
dominated by a single frequency, a slow drift in the mean value indicates some very
low-frequency content. The F

i
and Q sources in the FW}H behave similarly to the

pressure. A direct FFT of such a signal produces an erroneous result because of the
apparent discontinuity between the "rst and last points. This type of jump is
common because it is impractical to run simulations long enough to eliminate
all transients. Furthermore, most #ows have energy distributed over a range of
frequencies, making it impossible to use a time signal is an integer number of
periods of all relevant frequencies. Application of an energy preserving window
such as the Hanning "lter to the data makes it periodic. However, such a "lter often
signi"cantly decreases the amplitudes of tonal dominated data when only a few
periods are included in the signal. Because this is a common situation when using
CFD data, the window function shown in Figure 7(b) is used. This "lter is given by

=
j
"G

1/2(1!cos(8nj/N) for 1)j(N/8 and 7N/8(j)N
1 for N/8)j)7N/8, H (22)

and is essentially a Hanning "lter on the ends with no scaling in the center region.
The number of points in the sample is N, and j is an index that runs from 1 to N.
The window is applied in an energy preserving manner by scaling the output of the
FFT by 1/J(1/N)+=2

j
. The "lter in equation (22) is more suited to this application

than a standard one because it retains the proper relative amplitude for 3
4

of the
input signal. This feature is important because the acoustic calculation essentially
shifts each of the signals on the surface by an appropriate retarded time before
combining them at the observer location. Although this is being done in the
frequency domain, the solution can be a!ected by the relative positions of the nulls
from all of the contributing points. Furthermore, the time history of the predicted
output signal can be compared more readily with the real signal.

The acoustic signals downstream and directly above the cylinder are presented in
Figure 8. At 903 the lift dipole dominates, and a signal at the shedding frequency is
observed. Downstream, the drag component is signi"cant, and the harmonic
dominates. However, the amplitude is considerably smaller at 03. Relatively good
agreement exists between the solutions for di!erent integration surfaces, but some
variation is apparent. The solutions are also in general agreement with the
three-dimensional results of Brentner et al. [22] and Singer et al. [10], although the
amplitudes from the current two-dimensional calculations are signi"cantly higher.
Finite spans were used in the three-dimensional calculations, and Cox [23] has
shown that the spanwise extent has a large e!ect on the amplitude. The directivities
in Figure 9 show the dipole nature of the problem. The directivities obtained with
di!erent integration surfaces also exhibit good agreement. Some of the di!erences
are probably due to propagation errors in the CFD solution and integration
errors in the acoustic calculation. However, the passage of the strong, vortical
structures through the integration surfaces is also contributing to the noise. The
propagation of an analytic representation of a vortex of similar size and strength to
the vortices observed in the CFD simulation through an integration surface
JSV 19992522



Figure 8. Variation of acoustic signals from vortex shedding with integration surface. Observer is at
a radius of 128D"2)054 m: **, r"0)5D; } } } } }, r"1)5D; } ) } ) } ), r"2)5D; ) ) ) ) ) ) ), r"5)1D.
(a) 03, (b) 903.

Figure 9. Variation of directivity from vortex shedding with integration surface. Observer is at
a radius of 128D"2)054 m: **, r"0)5D; } } } } }, r"1)5D; } ) } ) } ), r"2)5D; ) ) ) ) ) ) ), r"5)1D.
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produces a blip of noise with an amplitude similar to the di!erences seen in Figures
8 and 9. The apparent vortex noise is caused by a time-varying force on the
integration surface as the vortex passes through it. This noise would be cancelled by
the quadrupole term if it were included. For this low-speed #ow, the quadrupole
contribution to the noise by the vortices is relatively small. Although the physical
noise generated by the lift variation on the cylinder dominates this problem, care
must be taken to insure that "ctitious sources in wakes do not contaminate the
solution.
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4. CONCLUSIONS

A two-dimensional frequency-domain formulation of the Ffowcs Williams and
Hawkings equation for sources in uniform, subsonic, rectilinear motion has been
presented. It is e$cient enough to be used to perform quick estimates of the noise
radiating from pseudo-two-dimensional phenomena and to study the input
requirements for the FW}H equation. Whenever possible, three-dimensional
simulations are preferred and should be performed because most practical
acoustics applications involve signi"cant three-dimensional a!ects. However,
two-dimensional calculations are much less computationally intensive and possess
most of the features of three-dimensional solutions when the sources is distributed
along a line. Each of the present results ran in less than a minute on a workstation.
The e$ciency of the current formulation and the advantage of the FW}H approach
make it more attractive than the Kirchho! technique. The present method has been
demonstrated to be practical with input data in non-linear near "elds where the
Kirchho! method is clearly not applicable. In addition, procedures for dealing
with problems involving both tonal and broadband signals in this frequency
domain formulation have been addressed. Furthermore, the restriction of
rectilinear motion is generally acceptable for two-dimensional problems. Therefore,
the present method seems to be a good choice for a large class of two-dimensional
problems.

( 2000 U.S. Government
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